183 research outputs found

    Gallus GBrowse: a unified genomic database for the chicken

    Get PDF
    Gallus GBrowse (http://birdbase.net/cgi-bin/gbrowse/gallus/) provides online access to genomic and other information about the chicken, Gallus gallus. The information provided by this resource includes predicted genes and Gene Ontology (GO) terms, links to Gallus In Situ Hybridization Analysis (GEISHA), Unigene and Reactome, the genomic positions of chicken genetic markers, SNPs and microarray probes, and mappings from turkey, condor and zebra finch DNA and EST sequences to the chicken genome. We also provide a BLAT server (http://birdbase.net/cgi-bin/webBlat) for matching user-provided sequences to the chicken genome. These tools make the Gallus GBrowse server a valuable resource for researchers seeking genomic information regarding the chicken and other avian species

    Peripheral Innate Immune Activation Correlates With Disease Severity in GRN Haploinsufficiency.

    Get PDF
    Objective: To investigate associations between peripheral innate immune activation and frontotemporal lobar degeneration (FTLD) in progranulin gene (GRN) haploinsufficiency. Methods: In this cross-sectional study, ELISA was used to measure six markers of innate immunity (sCD163, CCL18, LBP, sCD14, IL-18, and CRP) in plasma from 30 GRN mutation carriers (17 asymptomatic, 13 symptomatic) and 29 controls. Voxel based morphometry was used to model associations between marker levels and brain atrophy in mutation carriers relative to controls. Linear regression was used to model relationships between plasma marker levels with mean frontal white matter integrity [fractional anisotropy (FA)] and the FTLD modified Clinical Dementia Rating Scale sum of boxes score (FTLD-CDR SB). Results: Plasma sCD163 was higher in symptomatic GRN carriers [mean 321 ng/ml (SD 125)] compared to controls [mean 248 ng/ml (SD 58); p < 0.05]. Plasma CCL18 was higher in symptomatic GRN carriers [mean 56.9 pg/ml (SD 19)] compared to controls [mean 40.5 pg/ml (SD 14); p < 0.05]. Elevation of plasma LBP was associated with white matter atrophy in the right frontal pole and left inferior frontal gyrus (p FWE corrected <0.05) in all mutation carriers relative to controls. Plasma LBP levels inversely correlated with bilateral frontal white matter FA (R2 = 0.59, p = 0.009) in mutation carriers. Elevation in plasma was positively correlated with CDR-FTLD SB (b = 2.27 CDR units/ÎŒg LBP/ml plasma, R2 = 0.76, p = 0.003) in symptomatic carriers. Conclusion: FTLD-GRN is associated with elevations in peripheral biomarkers of macrophage-mediated innate immunity, including sCD163 and CCL18. Clinical disease severity and white matter integrity are correlated with blood LBP, suggesting a role for peripheral immune activation in FTLD-GRN

    Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head

    Get PDF
    Hematopoietic cell generation in the midgestation mouse embryo occurs through the natural transdifferentiation of temporally and spatially restricted set of hemogenic endothelial cells. These cells take on hematopoietic fate in the aorta, vitelline and umbilical arteries and appear as hematopoietic cell clusters that emerge from the vascular wall. Gen

    Metabolic Profiling of CSF: Evidence That Early Intervention May Impact on Disease Progression and Outcome in Schizophrenia

    Get PDF
    BACKGROUND: The identification of schizophrenia biomarkers is a crucial step towards improving current diagnosis, developing new presymptomatic treatments, identifying high-risk individuals and disease subgroups, and assessing the efficacy of preventative interventions at a rate that is not currently possible. METHODS AND FINDINGS: (1)H nuclear magnetic resonance spectroscopy in conjunction with computerized pattern recognition analysis were employed to investigate metabolic profiles of a total of 152 cerebrospinal fluid (CSF) samples from drug-naïve or minimally treated patients with first-onset paranoid schizophrenia (referred to as “schizophrenia” in the following text) and healthy controls. Partial least square discriminant analysis showed a highly significant separation of patients with first-onset schizophrenia away from healthy controls. Short-term treatment with antipsychotic medication resulted in a normalization of the disease signature in over half the patients, well before overt clinical improvement. No normalization was observed in patients in which treatment had not been initiated at first presentation, providing the first molecular evidence for the importance of early intervention for psychotic disorders. Furthermore, the alterations identified in drug-naïve patients could be validated in a test sample set achieving a sensitivity and specificity of 82% and 85%, respectively. CONCLUSIONS: Our findings suggest brain-specific alterations in glucoregulatory processes in the CSF of drug-naïve patients with first-onset schizophrenia, implying that these abnormalities are intrinsic to the disease, rather than a side effect of antipsychotic medication. Short-term treatment with atypical antipsychotic medication resulted in a normalization of the CSF disease signature in half the patients well before a clinical improvement would be expected. Furthermore, our results suggest that the initiation of antipsychotic treatment during a first psychotic episode may influence treatment response and/or outcome

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content

    Get PDF
    LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut

    The Origin and Evolution of Mutations in Acute Myeloid Leukemia

    Get PDF
    SummaryMost mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse
    • 

    corecore